

Scalable, Useful and Maintainable Digital Twins: Cross-Sector Experience from the Oil and Gas Sector

David Cameron SIRIUS Centre for Scalable Data Access

ESTEP Workshop, Charleroi 21st November 2018

 ${\rm UiO}$: University of Oslo

The SIRIUS Centre for Scalable Data Access

Eight years' financing from Norwegian Research Council

13 Industrial Partners (11 in 2017)

3 Leading Academic Institutions

Centre for Research-Based Innovation

Funding for 20 Ph.D. students

Innovation through prototypes and pilots

45 affiliated researchers

UiO **: University of Oslo**

The hype of digital twins

The reality?

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain

Why am I qualified to speak on this?

Upstream

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain

NG
LNG
LPG
Condensate
Crude

Downstream

Wide variety of products with tight quality constraints and specifications

Slab Bloom Billet Rod

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain

What is a digital twin?

"An integrated multi-physics, multiscale, probabilistic simulation of an as-built system, ... that uses the best available models, sensor information, and input data to mirror and predict activities/performance over the life of its corresponding physical twin."

www.dau.mil/glossary/pages/3386.aspx

A conceptual framework for twins

Oil and gas assets

The oil and gas asset life-cycle

The sub-surface (underground) lifecycle: > 80% of capital cost

A digital twin success story: on-line flow assurance

How the flow assurance digital twin works

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain

Current and planned twin applications

- Established practice
 - Flow assurance twins
 - High-quality visualization of operational data with 3-D model of facility
- Commercial but novel
 - On-line top-side operations simulators for prediction and data reconciliation
 - Structural and other special-purpose twins
- Future
 - Whole field twin: reservoir, flow assurance and top-side in interaction
 - Integrated twin along asset lifecycle and product lifecycle

Challenges to be addressed	
Business Models, Security and Confidentiality	Integration
Work practices	Maintenance
Scope	Computational overload: edge and cloud
Usability	Uncertainty, validation and data science

Business models, security and confidentiality

- An enabler of new business models?
 - New ways of procurement, engineering and operations.
 - Challenges are commercial and contractual.
- Security and confidentiality
 - Twins bring together all data: access by role
 - Securing applications that are connected to the Internet by a wide variety of not-very-smart devices.
 - Sharing data and sharing rewards, while not running a cartel

Work practices

- Tangible and measurable benefits to managers, engineers and operators.
- Safety and availability are paramount.
- A help, not a hindrance.

Scope

- If you try to do everything, you will do nothing well.
- Just enough functionality: Shell's ALOS: Appropiate Level of Smartness
- Support different granularities and time constants:
 - Compressor (ms), pipes and wells (days), reservior (weeks).

Usability

- All data is available!
- But I have to wade through huge amounts of irrelevant data.
- How can I filter down to the data I need for my job?
 - Superintendent, operator, process engineer, electrical engineer...

Integration

- How do we avoid the "point-to-point" nightmare?
- Everybody has a platform, with the aim of being the master.
- A digital twin must integrated multiple platforms and legacy sources.

Maintenance

- Need simple tools to build and configure digital twins.
- Need to maintain the system through the life of the asset: planned modifications and maintenance
- Easy to justify for a blower, but harder to justify for a software system?

Computational overload: edge and cloud

- Large systems, complex models and optimization = large resources
- Implemented in a hybrid, hetergeneous cloud
- Implementation needs to be designed

Uncertainty, validation and data science

- Measurements and models are both wrong
- ... And the plant can malfunction too
- Models must be tuned to follow the facility
 - Parameter estimation
- Measurements must be validated and reconciled
- Fruitful area for data science:
 - When combined with the physical models that constrain reality

A research program for digital twins

