

The Digital Twin in 2024: Sustainable and Maintainable?

David Cameron SIRIUS Centre for Scalable Data Access University of Oslo

> Tekna, Trondheim 3rd April 2019

The SIRIUS Centre for Scalable Data Access

Eight years' financing from Norwegian Research Council

13 Industrial Partners (11 in 2017)

4 Leading Academic Institutions

Centre for Research-Based Innovation

Funding for 20 Ph.D. students

Innovation through prototypes and pilots

45 affiliated researchers

UiO **Control University of Oslo**

simula

The hype of digital twins

sirius-labs.no

The reality?

What is a digital twin?

"An integrated multi-physics, multiscale, probabilistic simulation of an as-built system, ... that uses the best available models, sensor information, and input data to mirror and predict activities/performance over the life of its corresponding physical twin."

www.dau.mil/glossary/pages/3386.aspx

sirius-labs.no

A conceptual framework for twins

The oil and gas asset life-cycle

The sub-surface (underground) lifecycle: > 80% of capital cost

A digital twin success story: on-line flow assurance

DPSM – Sanntids modell					
Kontroll Oversikt Funk	csjoner Trend Instru	menter Tuning		Scenario Skjerm I	tjelp
	Observore Lekkasje/Hydrat	LAH alarm	Tkke Kvittert	27-01-1997	7 03.55
PLATTFORM	Kond 287 n3 Vanr GF: D.O.Maxavd [LF: O.O.m3vh P: 90.2bang T: 3.4degC	LF: 47 P10 T: 2 106m3 Tot 3 108m3 Tot 3 P11 GF: 0	.1 degC _{CL}	9. 9 berg Orm Orm BEHANDLI GE: 0.0m3/h VF: 0 0m3/h VF: 0 0m3/h MEG REGE	EKSPORT P37

How the flow assurance digital twin works

Current and planned twin applications

- Established practice
 - Flow assurance twins
 - High-quality visualization of operational data with 3-D model of facility
- Commercial but novel
 - On-line top-side operations simulators for prediction and data reconciliation
 - Structural and other special-purpose twins
- Future
 - Whole field twin: reservoir, flow assurance and top-side in interaction
 - Integrated twin along asset lifecycle and product lifecycle

S Fi = Centre for Research-based

Our current generation of twins

Operating procedures

A vision for digital twins in 2024

Challenges to master

Business Models, Security and Confidentiality	Integration		
Work practices	Maintenance		
Scope	Computational overload: edge and cloud		
Usability	Uncertainty, validation and data science		

Business models, security and confidentiality

- An enabler of new business models?
 - New ways of procurement, engineering and operations.
 - Challenges are commercial and contractual.
- Security and confidentiality
 - Twins bring together all data: access by role
 - Securing applications that are connected to the Internet by a wide variety of not-very-smart devices.
 - Sharing data and sharing rewards, while not running a cartel

Work practices

- Tangible and measurable benefits to managers, engineers and operators.
- Safety and availability are paramount.
- A help, not a hindrance.

Scope

- If you try to do everything, you will do nothing well.
- Just enough functionality: Shell's ALOS: Appropriate Level of Smartness
- Support different granularities and time constants:
 Compressor (ms), pipes and wells (days), reservior (weeks).

Usability

- All data is available!
- But I have to wade through huge amounts of irrelevant data.
- How can I filter down to the data I need for my job?
 - Superintendent, operator, process engineer, electrical engineer...

Integration

- How do we avoid the "point-to-point" nightmare?
- Everybody has a platform, with the aim of being the master.
- A digital twin must integrated multiple platforms and legacy sources.

Maintenance

- Need simple tools to build and configure digital twins.
- Need to maintain the system through the life of the asset: planned modifications and maintenance
- Easy to justify for a blower, but harder to justify for a software system?

Computational overload: edge and cloud

- Large systems, complex models and optimization = large resources
- Implemented in a hybrid, hetergeneous cloud
- Implementation needs to be designed

Uncertainty, validation and data science

- Measurements and models are both wrong
- ... And the plant can malfunction too
- Models must be tuned to follow the facility
 - Parameter estimation
- Measurements must be validated and reconciled
- Fruitful area for data science:
 - When combined with the physical models that constrain reality

A research program for digital twins

