Ll PETROBRAS

Optimal reservoir management for
maximizing production in
deep-offshore fields

Diego F.B. Oliveira

VIl November Conference — November 13, 2019



L PE TROBRAS

Applied Optimal Reservoir Management

1- Context

2- Field Description

3- Optimization Workflow and Results

4- Field Experience: Pilot Implementation

5- Final Remarks



Ll PETR OBRAS

Applied Optimal Reservoir Management in Context

Motivation

Proactive Reservoir Management

Planning is always better than React!
* Robust techniques are already available;
* Why is not widely applied?

Mature Field Operation

Excessive water production bottlenecks
offshore vessels:

* Constrains oil production;

* Increases operational costs.
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Applied Optimal Reservoir Management in Context

Objective

Field implementation is key!

» Overcoming operational barriers;
» Spreading new technical culture;

* Assessing optimization gains!
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Field Description

Offshore « Brazil
« Campos Basin
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Optimal Reservoir Management Workflow

Model Selection

Reservoir Field Uncertair)ty
Surveillance Implementation Propagation
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Field Injection Optimization under Uncertainty - Results (1/2)
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Field Injection Optimization under Uncertainty - Results (2/2)
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Optimal Solution ensures smoothness (easier to operational implementation);
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Operational Pilot: Main targets

Objective:

Testify simulation models
consistency.

Optimization

Is our work done?

Field
Implementation

Objective:
Ensure operational capability.
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Operational Pilot: Pioneer Field Implementation

ternary map

Pilot Site

Hydraulically Isolated;
Good Sensors (PDGs);
Moderate Water-cut level.

Pilot Optimization

Optimal Injection Pilot nth;
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Operational Pilot: Pioneer Field Implementation

Operational Capability

TARGET TASKS
RESERVOIR ENGINEERING [ PLATFORM SURVEILLANCE

*Perform OPTIMIZATION; * PURSUE optimal rates; *Production Tests more

Guarantee

operational *Submit rates to * PRIORITIZE optimal often;

success PLATFORM rates in operational *ALERT: excessive Water
failures; or Gas production;

*Feedback data to models
(VALIDATION) *Report RE of any ISSUE. *ALERT: injection BHP.
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Operational Pilot: Pioneer Field Implementation

Modelling Consistency
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Operational Pilot: Pioneer Field Implementation

Modelling Consistency
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Operational Pilot: Pioneer Field Implementation

Modelling Consistency
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Final Remarks

State-of-art optimization applied in a field offshore Brazil, with robust gains;
» Difficult task: Field Implementation! But a Field Pilot was successfully performed;

* We guaranteed operational feasibility, which is critical for future endeavors, and testified the
model consistency;

 We believe the implementation, monitoring and analysis of this field pilot is the main
contribution of our work;

« To the best of our knowledge, it is the first time that an offshore field is actually operated
based on a set of optimal controls;

» Clearly, this result indicates broader perspectives in terms of full-field applications, which we
are currently pursuing.

Ref: Oliveira, D. F. B. de, Pereira, D. F. A., Silveira, G. E., & Melo, P. A. L. S. de. (2019).
Pioneer Field Pilot of Optimal Reservoir Management in Campos Basin.
SPE Reservoir Evaluation & Engineering. doi:10.2118/199355-PA
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Thank You!

Questions, suggestions, general comments?

Diego F. B. Oliveira
diego.oliveira@petrobras.com.br
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Backup Slides

Diego F. B. Oliveira
diego.oliveira@petrobras.com.br
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Optimal Reservoir Management Workflow

Ensemble-based History Matching

* We have applied ES-MDA (Emerick & Reynolds, 2012) to history-match production data from
Petrobras field;

« Ten iteration were assigned for ES-MDA with decreasing inflation factors (not adaptive) in an
ensemble of 300 models;

» Historical data are composed of:
* Producers: oil and water rates, GOR and bottom-hole pressure (flowing and build-up
periods);
* Injectors: water rates and bottom-hole pressure (flowing and fall-off periods);
« Data available every 60 days along 10 years, but during shut-in periods the frequency
of 1 to 5 days is considered for BHP;

* Model parameters are horizontal permeability, porosity, vertical transmissibility, relative
permeability, anisotropy ratio and fault transmissibilities;

* Model contains four facies handled with a truncated Gaussian transformation.

OTC-29564 » Applied Optimal Reservoir Management e Diego F.B. Oliveira (Petrobras S.A.)
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Optimal Reservoir Management Workflow

Ensemble-based History Matching
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Optimal Reservoir Management Workflow

Model Selection

We consider a model selection approach proposed by Heitsch and Romisch (2003), and
modified by Armstrong et al. (2012);

This approach is based on minimizing the weight of the discarded models, where weight is a
distance-based function as discussed below;

Given a set of N, chosen model properties (static/dynamic), for each reservoir model we
have a vector

wj = | w; wi o owioe W }, 7=1,...,N¢

where w; is the vector of model properties of the jt ensemble member and Ne is the
ensemble size. Each vector w; is normalized to avoid scaling problems.

OTC-29564 » Applied Optimal Reservoir Management e Diego F.B. Oliveira (Petrobras S.A.)



L PE TROBRAS

Optimal Reservoir Management Workflow

Model Selection

« Let d;; be the distance between ensemble members i and j, such that

dij = \/(wi — w;)" (wi — wj)

« Let M be the set of all models that composes the ensemble from which we
wish to extract a subset & with N, selected models, such that M > S .

Also let D be the subset of discarded models, such that M =S UD .

We define the distance-based selection function as

C(S) = i -mind;
(S) Zel:)p} min di.;
J
where p; is the probability or weight of the jt*» model. So, we find S* by

S* = argmin C(S)

for a fixed and preset value Ny .

OTC-29564 » Applied Optimal Reservoir Management e Diego F.B. Oliveira (Petrobras S.A.)
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Model Selection

Classical MDS
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Optimal Reservoir Management Workflow

Field Injection Optimization under Uncertainty

We have applied an ensemble-based approximate gradient method as optimization
algorithm.

Gradients are approximated using the so-called Stochastic Simplex Approximate Gradient
(StoSAG) of Fonseca et al. (2017), where the search direction at point 1; is given by

NQ Np

§(u) = Ni

NL 2 {(@k’,j — ) (J(my, g, j) — J(my, “))T} ’

k=1 P =1

where Ny is the ensemble size, Np is the number of perturbed controls, and {ﬂk,j}
are independent samples of 1 .

We used seven (7) selected models as the ensemble and five (5) perturbed controls.

A line-search procedure is performed based on §(u) :

OTC-29564 » Applied Optimal Reservoir Management e Diego F.B. Oliveira (Petrobras S.A.)
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Optimal Reservoir Management Workflow

Field Injection Optimization under Uncertainty

* Current application aims to maximize the discounted Np (cumulative oil
production) given by

N¢

J(mg,u) = %Atnza

n=1 | (1+b)503 j=1

+ Considering the geological uncertainty, the average among the seven (7)
selected models is set as objective function;

» Except for bound constraints, all other state constraints are imposed in the

simulation deck, although we recognize that other better approaches may be
applied.

OTC-29564 » Applied Optimal Reservoir Management e Diego F.B. Oliveira (Petrobras S.A.)
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Optimal Reservoir Management Workflow

Field Injection Optimization under Uncertainty
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As demanded by the field operators, only Water
Injection Rates are considered as control variables.

20-year remaining production period;
5-year Correlation Length;

11 Water Injecting wells;
Non-uniform Control Steps;

Optimization starts from current injection rates
after historical period
— Different initial value and bounds for each
well.
Logarithm transformation of Gao and Reynolds
(2006) is applied to enforce bound constraints.



