Nanofluids for IOR and Tracer Technology

Jon Otto Fossum and **Ingebret Fjelde** VII November Conference Rio de Janeiro, 11-13 November 2019

Nanofluids for IOR and Tracer Technology Research Council of Norway, Petromaks2 project 2018-22

Partners in Norway

NTNU (Coordinating) Prof. Jon Otto Fossum (project manager)

Prof. Paul Dommersne

Adj. Prof. Kenneth D. Knudsen

Kenneth D. Knudsen

Tor Bjørnstad

IFE

Senior researchers Geir Helgesen

NORCE

Chief Scientist/Adj. Prof. **Ingebret Fjelde**

Partners in Brazil PUC-Rio Prof. Marcio Carvalho

Partners in France ESPCI-ParisTech Prof. Patrick Tabeling

USP Prof. Koiti Araki

Universite de Rennes1 Prof. Yves Meheust

NTNU/NORCE/PUC-Rio Konstanse Seljelid

NTNU/ESPCI-ParisTech Osvaldo Trigueiro Neto

VII NOVCONF- NP- 2

Objectives

- Develop microcapsules for controlled gelation in oil reservoirs
- Develop encapsulated tracer particles

Microcapsule controlled gelation

VII-NOVCONF- NP- 4

Motivation

• High water production in mature oil reservoirs, especially if fractures and high

permeability zones

- Water-oil separation
- Water disposal/environmental footprint
- Corrosion of equipment
- Abandonment of well due too high water-cut

Water shut-off gel treatment

- Inject gelant or pre-formed gel in reservoir
 - E.g. silica gel with Na⁺ as activator
- Follow preferable paths of water
- Block paths and redirect injected water

Challenges

- Controlled gelation time
 - Placement of gel in reservoir
- Rheology
- Strength
- Long-term stability
- Environmental concerns

Microcapsules

- Encapsulating activators
- Triggered release, e.g.
 - pH, salt, temperature, reaction with oil
- Easy fabrication in laboratory using microfluidic devices
- Tunable properties
 - Size
 - Material

VII-NOVCONF- NP- 8

Microcapsules

Adapted from: Do Nascimento DF *et.al*. Flow of Tunable Elastic Microcapsules through Constrictions. Sci Rep. 2017;7(1):1–7. Licenced under <u>CC BY 4.0</u>.

Microcapsule material

- Controlled rupture or leakage triggered by e.g:
 - pH
 - Temperature
 - Osmotic swelling
 - Reaction with oil
 - Other mechanisms

Plan

- Selection of gel type, capsule material and activator type
- Characterize gel
 - Rheometry
 - Small Angle X-ray Scattering (SAXS)
 - Sirius or similar facility in Europe or USA
 - Small Angle Neutron Scattering (SANS)
 - Gel strength test
- Produce and characterize capsules
- Investigate release properties of capsules
- Core-flood experiments with gel and capsules

Sirius at UNICAMP

Encapsulated tracer particles

Motivation

- Transport of Tracer Particles for EOR
- Easy capture of magnetic nanoparticles

Goal

- Wrapping (e.g. of magnetic nanoparticles) using nanosheets of clay
- Understand and control process
- Functionalizing magnetic nanoparticles to control packages

Polystyrene sheets wrapping water drops inside silicone oil, 1mm Scale bar [1].

Multi Sheet

Crumpled GO thin sheets wrapping Si particles. [2].

Self-assembled GO capsules of (top) 80nm and (bottom) 400nm size [3].

Paulsen, J. D. *et al.* (2015). Optimal wrapping of liquid droplets with ultrathin sheets. *Nature materials*, *14*(12), 1206
Luo, J. *et al.* (2012). Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. *The journal of physical chemistry letters*, *3*(13), 1824-1829.
Ju, S. A. *et al.* (2011). Graphene-wrapped hybrid spheres of electrical conductivity. *ACS applied materials & interfaces*, *3*(8), 2904-2911.

Clay

- In nature & synthetically made
- Clays from University of Bayreuth, with very well-defined charge and homogeneous charge distribution
- Layered material
- Swells in water and delaminates

Activity associated with the Project

- Double Layered Clay
- Provided by University of Bayreuth (Prof. Josef Breu)
- Swells in water and delaminates

Microfluidic device for wrapping

- Uses previously made monodisperse clay solution to wrap droplets
- Droplets in a T junction going into the nanosheets
- Work to be done in Paris, under Patrick Tabeling's supervision

Possible Solution

- Castor Oil + Clay + Saline water
 - Wrapping Occurred

VII-NOVCONF- NP- 18

Swelling to Rupture

Plan

- Clay functionalization and selection of functionalized tracer particles
- Optical microscopic characterization
- Nanocapsules
 - Small Angle X-ray Scattering (SAXS): Sirius or similar facility in Europe or USA
 - Small Angle Neutron Scattering (SANS)
- Mechanical strength and stability of capsules (Atomic Force Microscopy)
- Investigate control of release properties of capsules
- Core-flood experiments with extraction by magnetic field

Sirius at UNICAMP

Summary

- Development started
 - Microcapsules for controlled gelation in oil reservoirs
 - Encapsulated magnetic tracer particles

Jon Otto Fossum

jon.fossum@ntnu.no

Ingebret Fjelde

infj@norceresearch.no

VII NOVCONF- NP- 22