

Arne Dugstad arne.dugstad@ife.no

Institute for Energy Technology
Kjeller, Norway
www.ife.no

Transport and injection of CO₂ with impurities-When is corrosion an issue

Emission 2017: 35 Gt CO₂

IEA CCS Roadmap (2 °C)

2050: transport and injection of 7-9 Gt CO₂

```
12" pipelines ~ 3 000

20" pipelines ~ 1 000

Ship (loading)~ 800 000 \rightarrow 10 kton
```

Need to define the safe operation window before infrastructure and capture plants are designed and built!

CO₂ transport, State of the Art

- CO₂ injection for EOR > 35 years (USA)
- More than 100 installations, more than 5000 km pipeline
- C-steel: Good experience with <u>clean and dry CO₂</u>
- Reported corrosion when water accumulates
- CRA: "Wet" CO₂, Sleipner, short distance
- Thousands of papers/corrosion studies for $pCO_2 < 20$ bar
 - Few studies for pCO₂ > 50 bar
 - Few studies presenting data with flue gas impurities
- Ship transport , food grade quality
 - Yara (200 kton/year)

Safe operation window?

CCS CO₂ transport challenges vs. previous CO₂ transport experiences

- New impurities (H_2O , H_2S , O_2 , CO, SOx and NOx) might be present
 - How much is acceptable?
 - When will cross chemical reaction take place?
 - When will aqueous phases form
 - When will corrosion become a problem?
- Reuse of existing oil and gas infrastructure (13% Cr, soft material.....)
- Complex network
 - Compatibility of streams (monitoring)
 - Many point sources, more upsets?
- Subsea: shut down, pigging, depressurization and upset remediation
- Ship transport, low temperature (-25 C)-solubility, corrosive phases
- Use of flexible flowlines and risers

CO₂ composition recommendations/specifications

- Several recommendations, but lack of experimental verification
 - Based on: Corrosion issues, Health and safety, Reservoir/EOR
- The ISO transport standard (2016) gives no clear recommendation on CO₂ composition due to lack of data. "The most up to date research should be consulted during pipeline design"
- Does ship transport require stricter specifications than pipeline transport?

Comp.	Dynamis 2008	(for design)		Goldeneye/ Peterhead	Northern Light
ppmv	2000			2014 (2016)	2018
H ₂ O	500	730	500	50	30
H ₂ S	200	100	100	0.5	9
СО	2000	35	35	10	100
02	<40000	40000	10	1 (5)	10
SOx	100	100	100	10	10
NOx	100	100	100	10	10

Water solubility in pure liquid CO₂

Impurities in CO₂ and possible reactions

H ₂ O, ppmv	500	Solubility in pure CO2:1000-3000					
H ₂ S, ppmv	200	1.5 Mt/y					
CO, ppmv	35	1.5 IVIU y 100 ppmv					
O ₂ , ppmv	40000	100 ppinv 100-200t/y					
SOx	100	100-2000 y					
NOx	100						

$$2 H_2S + O_2 \rightarrow S_x + 2 H_2O$$

 $4 NO_2 + O_2 + 2 H_2O \rightarrow 4 HNO_3$
 $SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow H_2SO_4$

Water solubility in liquid CO₂ with impurities

Injection wellsbackflow of formation water

$$2 H_2S + O_2 \rightarrow S_x + 2 H_2O$$

 $4 NO_2 + O_2 + 2 H_2O \rightarrow 4 HNO_3$
 $SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow H_2SO_4$

V_{CO2}/V_{water} ratio

Testing of CO₂ specifications

Comp.			NETL* (for design)		Northern Light	Exp 25 C
ppmv 2008		2012	2013	2014 (2016)	2018	100 bar
H ₂ O	500	730	500	50	30	122/90
H ₂ S	200	100	100	0.5	9	130/36
СО	2000	35	35	10	100	0/0
02	<40000	40000	10	1 (5)	10	275/70
SOx	100	100	100	10	10	96/30
NOx	100	100	100	10	10	69/32

	H ₂ O	H ₂ S	NO ₂	NO	SO ₂	O ₂
	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
IFE experiment. feed	122	130	96	0	69	275

	H ₂ O	H ₂ S	NO ₂	NO	SO ₂	O ₂
	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
Feed	122	130	96	0	69	275
Vented CO ₂	<50	<10	<20	2-5	<30	Uncertain

Not exposed

0.034 mm/year

	H ₂ O ppmv	H ₂ S ppmv	NO ₂ ppmv	NO ppmv	SO ₂	O ₂ ppmv
Feed	122	130	96	0	69	275
Vented CO ₂	<50	<10	<20	2-5	<30	Uncertain

 $CO_2 1.5 \text{ Mt/y}, > 200 \text{t/y}$

	H ₂ O ppmv	H ₂ S ppmv	NO ₂	NO ppmv	SO ₂	O ₂ ppmv
Feed	122	130	96	0	69	275
Vented CO ₂	<50	<10	<20	2-5	<30	Uncertain

Is material selection a solution?

Conclusions/Challenges

- Free water and CO₂: high corrosion rates, >> 1 mm/y
- No aqueous phase, low corrosion rates, << 0.1 mm/y
- Developing models/tools to determine/predict "safe operation window"
 - Formation of corrosive phases
 - Formation of solids (sulfur, corrosion product)
 - Accumulation of impurities (depressurization)
- Generate experimental data for validation of models and tools required to design and operate CCS systems efficiently and at minimum cost.