

Arne Dugstad arne.dugstad@ife.no

Institute for Energy Technology Kjeller, Norway www.ife.no

Flexible pipes-Corrosion of armour wires in confined environment

VII November Conference, Rio 2019

Presentation Outline

- Flexible pipe design
- Confined environment concept
 - Formation of protective corrosion product (FeCO3) films
 - Disturbing factors
- Oxygen ingress and reformation of protective FeCO₃ film

Cross section of a flexible pipe

Confined environment:

Low ratio of free volume (V) to steel surface area (S), V/S < 0.1 ml/cm²

Cross section of a flexible pipe

Diffusion:

- H₂O
- CO₂
- H₂S
- CH₄ +++

Damaged outer sheath:

- $air(O_2)$
- sea water

Air through vent port

Confined environment:

Low ratio of free volume (V) to steel surface area (S), V/S < 0.1 ml/cm²

No protection- high corrosion rates

CO_2 corrosion, fCO₂=1 bar

Carbon steel exposed to <u>water + $CO_2/H_2S/O_2$ </u> in the annulus corrodes unless it achieves a protective layer on the surface

	Oil wetting	
	Grease	
Steel		

CP?

Tape

Acceptable corrosion rates

<0.01 mm/year

Good protective corrosion product films!

pH and SR dependent on the dissolved corrosion product concentration

$$Fe + 2H_2CO_3 \rightarrow Fe^{2+} + 2HCO_3^- + H_2$$
 pH, SR_{FeCO3}

$$SR_{FeCO3} = \frac{C_{Fe^{2+}} \cdot C_{CO_3^{2-}}}{K_{sp}} > 1$$

$$Fe^{2+} + CO_3^{2-} = FeCO_3(s)$$

Accumulation of corrosion products

pH vs. Fe²⁺ in annulus

Annulus vs. pipe line corrosionwhat is different?

- Similarities
 - CO₂ content can be high, worst case corrosion rates (>>1 mm/y)
- Differences
 - Damaged outer sheath gives O₂ contamination
 - Low H₂S concentration if present, diffusion and consumption
 - Low ratio of free volume (V) to steel surface area (S). V/S < 0.1 ml/cm²
 - Fast accumulation of dissolved corrosion products (<u>no escape</u>)
 - Liquid flow rates are very low, slow replacement of electrolyte

Confined environment and high $SR_{\mbox{\scriptsize FeCO3}}$

Will protective corrosion product films always form in confined environment?

- Armour wire steels respond differently to CO₂
- Natural inhibition (soft material, grease...), partial protection
- Non homogeneous distribution of corrosive gases and dissolved corrosion products
- Consumption of CO₂ and H2S
- Changes in operational conditions (temp., bore fluid, shut down)
- Damaged outer sheath, sea water floding, oxygen ingress
- Corrosion history oxygen exposure prior to protective film formation

O₂ destabilizes protective FeCO₃ films

 $4 \ Fe^{2+}(aq) + 4 \ H^{+}(aq) + O_2(aq) \rightarrow 4 \ Fe^{3+}(aq) + 2 \ H_2O(l)$

 $Fe^{3+}(aq) + 3 OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$

IFE

 $FeCO_3 \rightarrow Fe^{2+} + CO_3^{2-}$

Low corrosion rate

High corrosion rate

The required SR_{FeCO3} to achieve and maintain protection is «history» dependent

CO₂ exposure + failure/flooding-O₂ exposure + repair-CO₂ exposure

Experiments

Field case

IFE

1

Summary

- Most flexibles perform as expected, i.e. corrosion rates < 0.01 mm/y, no cracking
- The confined environment in the annulus does not always give corrosion product films with sufficient protectiveness
- Damaged outer sheath and sea water flooding might be a challenge
- Oxygen ingress destabilize protective FeCO₃ film and gives higher corrosion rates and pitting
- The annulus chemistry is complex, like a clockwork depending a large number of time dependent parameters

