EFFECT OF CREVICE CONFIGURATION ON CORROSION BEHAVIOUR OF TENSILE WIRES OF FLEXIBLE PIPES UNDER DIFFERENT CONDITIONS

b**cor**í

Laboratório de Corrosão COPPE|UFRJ DMM - PEMM - Poli

Érica Vidaurre Senatore, D.Sc Pedro Netto da Silva, M.Sc Professor José Antônio da Cunha Ponciano Gomes

Backgroud

□ Schematic indicating the multi-layer construction of flexible pipe designs

Backgroud

The high strength steel wires are confined in the annulus and in contact with a corrosive environment formed by gases and water molecules diffusing from the bore through the inner polymer layers.

Backgroud

- □ The tensile wires are usually covered by antiwear tapes and this configuration can also interfere in their corrosion behaviour.
- The position of the tape relative to the wire is not uniform due to many variations in the manufacturing process of the pipe.
- **\Box Some regions** \rightarrow almost **absolute intimate contact**.
 - **Other region** \rightarrow there is a **gap** between the polymer and the steel \rightarrow **allowing** water and gases to reach the surface of the wire.

Anti-wear tape	
Steel wire	

Background

- If this gap is wide enough to guarantee sufficient mass transport of chemical species, the composition of the fluid in the annulus in this region will be relatively homogeneous.
- If this gap is so narrow that locally the chemistry of the corrosive environment develops differently than in the bulk, localised corrosion may occur.

Two questions

1) Does the polymer prevent the liquid from reaching the metal surface completely?

R: YES \rightarrow corrosion does not occur under the polymer.

R: NO \rightarrow corrosion occurs under the polymer.

2) But what is the morphology of the attacks, **localised or uniform**?

Uniform corrosion → where the **opening is large** enough to allow mass transport and prevent the development of a different local environments

Localised corrosion \rightarrow where the **opening is so narrow** that the environment **develops differently in these regions**.

What conditions would we like to simulate in this work?

General investigation of the effect of oxygen on the CO₂ corrosion

Step 1: Annulus initially flooded: *[*Fe²⁺] and deaerated

\succ CO₂ corrosion

Iron carbonate precipitation

Step 2: Outer layer damaged: $\uparrow O_2$

- \succ O₂ and CO₂ corrosion
- Iron carbonate film formation is affected
- Iron oxides formation

Step 3: Outer layer damage is fixed: $O_2 \sim 0$

- \succ CO₂ corrosion
- Iron carbonate precipitates again.

Arne Dugstad's previous works on history effect were used as theoretical background for this setup.

Adapted from http://www.petrobras.com.br/data/files/7F/C2/09/90/F7F6B4101E4E24B446CD61A8/tecnologias-presil-risers.jpg

Test Parameters

Test 2 and 3: 90 and 180 days - On going

Experimental Setup

Configuration of creviced specimens

Nuts and bolts to facilitate the adjust the gap between polymer and specimen before loaded

The four-point bend tests

Test specimens were loaded to 90% YS. Creviced specimens had their deflection measured already with the polymer tape.

Dial

indicator

ſ		INPUT		OUTPUT	
		%Y.S.	Y.S.	σ	
		(MPa)	(MPa)	(MP	a)
		90	1085	976	.5
		INPUT			OUTPUT
	Н	А	Е	t	У
	(mm)	(mm)	(GPa)	(mm)	(mm)
	100	23	210	5.88	1.84

y deflection

- σ stress on the outer fiber (convex surface)
- H distance between outer supports
- A distance between inner support and closest outer support
- E Young's modulus (usually E=210GPa for steels)
- t specimen thickness

Test 1. TEFLON polymer layer (1 month)

Test cell aspects according to the variations of the test environment.

Step 1

Step 2

Test 1. Results

Macroscopic analysis: (A) Bare specimen (B) creviced specimen

SEM analysis: (C) Pitted area: Bare specimen (D) Protected regions and uniform corrosion: creviced specimen

Test 1. Results (1 month)

Surface analysis – Confocal microscopy

Test 1. Results (1 month)

Surface analysis – Confocal microscopy

Main conclusions of Test 1

- No cracks were observed.
- Pitting was observed in the specimen tested without crevice.
- The polymer tape on the surface of the steel prevented pitting.
- Severe uniform corrosion was observed under the polymer tape.

Test 1.2. Setup at IFE (Norway)

Experiment	01.1	
Status	Finished	
Polymer	Teflon	
Duration	1 month	
Cracks	No	

Before cleaning

Bare specimen

Creviced specimen

No pitting – iron carbonate film

Localised attacks resulted from CO₂ bubbles retained at the surface of the bare specimen.

Bare specimen

Creviced specimen

Main conclusions of Test 1.2

- No cracks were observed.
- No pitting was observed in the specimen tested without crevice.
- Localised attacks resulted from CO₂ bubbles retained at the surface of the bare specimen. As they were large and shallow, did not caracterise pitting.
- The bare specimens were relatively protected by the iron carbonate film and almost did not corrode.
- Uniform corrosion was observed under the polymer tape, although not as severe as in the specimens exposed to oxygen.

Tests 2 and 3. PA11 polymer layer

Tests 2 and 3. PA11 polymer layer

Test cell aspects according to the variations of the test environment.

A: first day of experiment, with only CO2 and N2 in the gas mixture. Before heavy precipitation of iron carbonate.

B: gas mixture is changed and **oxygen reacts** to the dissolved iron and **disrupts the iron carbonate films**.

C: test cell after the test solution was drained at the end of step 2, and before step 3 started. D: test cell during step 3.

References

COELHO, P. P. S. (2013) Estudo da susceptibilidade à corrosão sob tensão em atmosfera de H_2S das armaduras de tração de dutos flexíveis (in Portuguese). M.Sc. Thesis, Federal Centre of Technological Education Celso Sukow da Fonseca, Rio de Janeiro, Brazil.

https://www.4subsea.com/solutions/digitalisation/flextrack/

http://www.substech.com

Fergestad, D. & Løtveit, S. A. Eds. (2017) Handbook of design and operation of flexible pipes. NTNU / 4Subsea / SINTEF Ocean.

Roberge, P. R. (1999) Handbook of corrosion engineering. McGraw-Hill

http://www.petrobras.com.br/data/files/7F/C2/09/90/F7F6B4101E4E24B446CD61A8/tecnologias-presilrisers.jpg

ASTM G39 (2016) Standard practice for preparation and use of bent-beam stress-corrosion test specimens. ASTM International.

Thanks for your attention!