

The Whole Plant Digital Twin: What Can Semantic Technologies Contribute?

Advances in Process Automation and Control Manchester David Cameron SIRIUS Centre for Scalable Data Access, University of Oslo 20th November 2019

Acknowledgements

- SIRIUS is financed by the Research Council of Norway, project 237898 and by the partner companies.
- My colleagues:
 - Arild Waaler, Martin G. Skjæveland, Evgeny Kharmalov, Keith Lewis University of Oslo
 - Johan W. Klüwer DNV GL
 - Per-Olav Opdahl Aker Solutions
 - Tiina Komulainen Oslo Metropolitan University.
 - Anders Gjerver, Christian M. Hansen Aibel
 - Mara Abel Federal University of Rio Grande do Sul

SIRIUS: A Centre for Research-Driven Innovation

Scalable Data Access in the Oil & Gas Domain

We have lots of data

We have unprecedented processing capability

Why is it so hard to get access to the data we need?

S Centre for Research-based

Industrial Digital Transformation	
Analysis of Complex Systems	
Data Science	
Ontology Engineering	
Semantic Integration	

Scalable Computing

Empirical studies of industrial data projects: Best practices

Simulation and optimization of complex systems: ABS simulator

Domain-adapted data science and language processing

Making ontology usable by nonspecialists: OTTR templates

Robust semantic databases and data access: RDFox & OBDA

Cloud, architecture and HPC interconnects: Melodic + hardware

Applied to beacons that address industry needs

Geological Assistant	Integrated Digital Planning	
Subsurface Data Access & Analytics	Digital Twins	
Digital Field & Reservoir Management	 Digital Field Development	
Personalized Medicine	Environmental Applications	

The hype of digital twins

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain

What is a digital twin?

"An integrated multi-physics, multiscale, probabilistic simulation of an as-built system, ... that uses the best available models, sensor information, and input data to mirror and predict activities/performance over the life of its corresponding physical twin."

www.dau.mil/glossary/pages/3386.aspx

A conceptual framework for twins

A digital twin success story: on-line flow assurance

How a simulation digital twin works

Our current generation of twins

Semantics

- Describes the significance of a language
- Discusses the relations between signifiers: words, phrases, signs and symbols, and how they relate to reality.

Knowledge Representation

- Create an vocabulary
 - Geosciences
 - Standards and requirements
 - Process plants
 - Piping
- Define relationships between things:
 - Geosciences: Sandstone A is constituted of Upper Jurassic Sand
 - Requirements: Chemical Injection Valve is documented in product data sheet Triples!
 - Process equipment: Butterfly valve sub-class of Valve
 - Piping: Flange ACME 66 NPS 1 CL150 has pressure rating CL150
- Represent as computable logical statements
 - Using a tool like Protégé and a triple-store database
 - This is hard.
 - We are developing templates that:
 - Avoid tedious repetition.
 - Support tabular data entry
 - Allow engineers to write knowledge models

Perfect or pragmatic? Reuse standards!

Without a PhD in

computer science!

Aibel's challenge

Managing Complex Requirements

Source: Christian M. Hansen, Aibel

Benefits:

Material Master Data (MMD) for Piping Systems

Axioms	1.840.769
Logical axioms	535.512
Declaration axioms	106.674
Class count	98.133
Object property count	135
Data property count	723
Individual count	20.412
SubClassOf	505.376
EquivalentClasses	745
DisjointClasses	27
AnnotationAssertion	1.198.266

- Represent the contents of documents as an ontology
 - PDF documents: Engineering standards, client specifications
- Hierarchy of types and requirements for type membership
- Make explicit the meaning of document contents
 - Available to both humans and computers

Ambitions for digitized requirements

- Requirements both machine- and humanreadable
- Better verification of requirements
- Easy discovery of inconsistent requirements
- Remove ambiguity in requirements
- Better searching to find requirements

The READI concept

Requirements

How the SIRIUS innovation model works

PeTWIN: Whole-field digital twins for production optimization and management Petromaks/FINEP Project: 2020-2023 28M kr project sponsored by Research Council of Norway, FINEP, Equinor, Shell and Petrobras

UiO : University of Oslo

PETROBRAS

With funding from The Research Council of Norway

SIRIUS Center for Scalable Data

SIRIUS Center for Scalable Data Impact of the PeTWIN project

From	То
Unclear and hyped	Robust, research-based best practice
Point-to-point, ad-hoc integration	Model-driven integration
Multiple applications in silos	Integrated applications
Vendor lock-in	Standards-based interoperability
Ad-hoc and manual change control	Lifecycle model for change control
DSML is hard to scale	DSML is automated and supported by models
Semantic models are hard to build	Engineers and geologists can build models
Separate user interfaces	Standard, semantic user interfaces
Integration in a data lake	Data is kept where it is most useful
On-site deployment	Best possible deployment
Small-scale academic projects	Realistic oil and gas systems.

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain.

A research program for digital twins

We have lots of data

We have unprecedented processing capability

Why is it so hard to get access to the data we need?

Centre for Research-based

Industrial Digital Transformation	
Analysis of Complex Systems	
Data Science	
Ontology Engineering	
Semantic Integration	
Scalable	

Computing

Empirical studies of digital twin projects - how to avoid failure

Design effective deployment of complex multi-cloud twins

Combine text and structured data. Process legacy documents.

Engineers build their own semantic models using familiar tools

Task-oriented data access, search and queries.

It runs fast, even though it is big and complex!

Thank You!

www.sirius-labs.no

8th Floor, Ole-Johan Dahls hus, Gaustadaléen 23B, 0373 Oslo, Norway

Contact

Arild Waaler, Director, arild@ifi.uio.no David Cameron, Coordinator, davidbc@ifi.uio.no

Lise Reang, Admin. Manager, liserea@ifi.uio.no

With funding from

The Research Council of Norway

